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Double-diffusive convection in an inclined fluid layer 
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The nonlinear double-diffusive convection in a Boussinesq fluid with stable constant 
vertical solute gradient, and bound by two differentially heated rigid inclined parallel 
plates is considered. The analysis was carried out by a Galerkin method for the cases 
when the angle of inclination was O", - 45" and -t 45' (positive angle denotes heating 
from below, and negative angle denotes heating from above). The counter-rotating 
cells predicted by the linear theory merge into single cells with the same sense of 
rotation within B very short period of time even under slightly supercritical conditions. 
This is consistent with the experimental observations. Furthermore, as observed in 
the experiments, the evolution of instability is more rapid when heating is from above 
than when heating is from below. Our results for a salt-heat system are in excellent 
agreement with those based on the limiting case of Lewis number --z 0 and Schmidt 
number --z co. 

1. Introduction 
We consider the case of an inclined fluid layer with a stable constant solute gradient 

in the vertical direction and bound by two differentially heated, infinitely long parallel 
plates. The plates are assumed to be perfectly conducting to heat and non-diffusive 
to the solute. If the heating is slow, the temperature gradient across the layer would 
be constant and, under these conditions, a steady stable motion exists within the slot. 
While the buoyancy forces dominate near the boundaries, there may be no net density 
gradient in the interior region. However, any lateral displacement of the fluid could 
result in destabilization, since the diffusivities of heat and solute are considerably 
different, thus causing the two components to equilibrate at  different rates. Experi- 
mental and theoretical investigations for this problem were carried out by Paliwal & 
Chen (1980a, b) .  Their results show that the agreement between the theoretical pre- 
dictions based on a linear stability analysis and the experimental observations of the 
critical parameters is very good. However, while the linear stability analysis predicts 
the formation of pairs of counter-rotating cells a t  the onset of the instability (Paliwal 
1979), the experimental observations indicate that the instability manifests itself in 
the form of two-dimensional convection rolls with the same sense of rotation (i.e. with 
the fluid rising near the hot wall and sinking near the cold wall). 

The aim of the present analysis is to study the evolution of the flow after the onset 
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of instability, and to investigate whether the inclusion of the nonlinear terms in the 
governing equations could generate a flow pattern that would closely resemble that 
observed in the experiments. Hart  (1973) has considered the nonlinear problem of a 
vertically stratified fluid subjected to differential heating in a vertical slot. His results 
indicated that, with the inclusion of nonlinear terms in the governing equations, the 
streamline pattern predicted by the linear theory could be altered considerably. The 
analysis was carried out by a finite-amplitude method based on weak nonlinear inter- 
action theory. In  order to facilitate algebraic simplicity, he used the flow parameters 
describing the asymptotic stable steady state corresponding to the case of large solute 
Rayleigh number (defined in 8 2). Reddy (1980) solved the full nonlinear system of 
governing equations describing the motion in a vertical slot, using a finite-difference 
method with some approximations. Owing to numerical difficulties, the computations 
were restricted to the cases of only moderate values of solute Rayleigh number, and 
for lateral boundaries that  were diffusive to both heat and solute. To simplify the 
analysis further, the stable steady state was assumed to be quiescent with no net 
horizontal density gradients. His results indicate that, to a certain extent, qualitative 
agreement with the experimental observations of Wirtz & Reddy (1979) could be 
obtained. 

We have solved the full nonlinear system of governing equations describing the 
double-diffusive motion in an inclined slot by a Galerkin method. To keep the analysis 
as general as possible, no approximations have been made, either in the equations 
describing the stable steady motion, or in the boundary conditions. In order to obtain 
comparison with the experimental observations of Paliwal & Chen (19804, the 
computations were done with the values of the flow parameters used in their experi- 
ments. I n  addition, since the difhsivity of heat is much larger than that of the solute, 
computations based on an asymptotic approximation as suggested by Straus ( 1  972) 
were also carried out. 

2. Formula tion 
An inclined fluid layer bound by two rigid parallel plates is considered. The co- 

ordinate system is shown in figure 1.  There is a constant stable solute gradient 
@: = dS,*/dc ( <  0) in the vertical direction. The plates are infinitely long in the x -  
direction and are inclined a t  an angle $ from the vertical. It is assumed that the plates 
are perfect heat conductors, maintained a t  a temperature of AT". The isosolutal lines 
are parallel with an upward tilt towards the hot wall everywhere except near the walls, 
where they become normal to the walls due to the non-diffusive boundary conditions. 
For small variations in salinity and temperature, the equation of state could be written 
as 

where 
p* = p:{l-P,*(T*-T~)+,8,*(S*-s~)), (2.1) 

-L(Xj , P?=--(- j  1 ap* . 
P,* = p," as* T',P* p," aT* s*,p* 

The subscript r indicates a suitable reference statc and the superscript * indicates 
that  the quantities are in dimensional form. T ,  S, P and p indicate respectively tem- 
peratsure, salinity, pressure and density. 
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FIGURE 1. The oo-ordinate system. 

The equation of motion for this system could now be made dimensionless with the 
following scaling parameters: D for length, D2/K, for time, LAT* for temperature, and 
Dl@Z 1 for the solute. The two-dimensional equations of motion in the (x, z)-plane 
with the Boussinesq approximation could then be written as 

COS@ = 0, (2.2) 

where Rt = g/3: A T * D 3 / ~ t  v is the thermal Rayleigh number, R, = g/3f I D 4 / ~ t  v is 
the solute Rayleigh number, Sc = V / K ~  is the Schmidt number, and L = K ~ / K ~  is the 
Lewis number. Here, the partial derivatives are represented by subscripts. 

The stream function Y is defined such that u = - Yz, and w = Y,, and the boundary 
conditions are 

I n  the stable steady state, the flow is parallel to the side walls. Equations (2.2)-(2.4) 
together with boundary conditions (2.5) simplify to a linear, fourth-order ordinary 
differential equation for the vertical component of velocity, which can be readily 
solved. The solutions are given by Paliwal & Chen (19806). It should be noted, however, 
that  their solutions are presented in a slightly different set of non-dimensional 
parameters. 

When each of the variables Y', T and S in (2.2)-(2.4) are expressed ns a sum of the 
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mean and the perturbation quantity, the following set of perturbation equations are 
obtained : 

+ cos 4 R, 8,- - Rs ) -sin d ( ( LS" 

8, = v2s - %% + S,@Z - So;$x + $28, - $x% (2.8) 

where V2 = axx + az2, $ = Y -Yo, 8 = T - To, and s = S - So. The subscript 0 denotes 
steady-state quantities. Based on the experimental observations of Paliwal & Chen 
(1980a), we assume that the perturbations are periodic in z. The boundary conditions 
are 

$ = $ , = O = s X = O  a t  x = + i ,  
(2.9) I ( $ , ~ , 5 ) , 4  = ($, 6, S L r f - j h ,  

wherej is any positive integer between 0 and CO, and the wavelength h = 2n/~t ,  with 
01 the wavenumber. 

3. Method of solution 
A Galerkin method is employed to solve the system of equations (2.6)-(2.9). We 

expand the variables $, 8 and s in a double series in x and z,  in terms of complete sets 
of orthogonal functions that satisfy the homogeneous, and the periodicity boundary 
conditions (2.9) : 

I$ = 2 a&) @.,(x) eitaz, (3.') 
I r ,  1 

where 1 < k € 00, - 00 € 1 < 03, ak, l  = 6 k , - l ,  bkl = 6k,-l and Ckl = C"k,-l, with - denoting 
the complex conjugate. 

The functions $k(x) and Bk(x) are the same as those first proposed by Chandrasekhar 
(1961) for solving thermal-convection problems and were later used by Busse (1967) 
for solving nonlinear thermal-convection problems. The function sk(x) is the same 
as that used by Paliwal & Chen (1980b). When the expansions for $, 8 and s from 
(3.1)-(3.3) are substituted into (2.6)-(2.8) and the resulting formal expressions are 
made orthogonal to the expansion functions themselves, a system of first-order non- 
linear equations describing the evolution of coefficients akl, bk, and ckl with time are 
obtained: 
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(3.5) 

This system of nonlinear ordinary differential equations is solved numerically by the 
algorithm proposed by Gear (1971), with the initial conditions obtained from the 
eigenvectors of the linear stability problem (see appendix). Details of the calculation 
can be found in Thangam (1980). 
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4. Results and discussion 
Before the results are analysed, a discussion on the numerical convergence of the 

results, and the influence of the initial conditions on the final solution is in order. 
To evaluate the numerical convergence, the changes in the kinetic energy and the 
Nusselt number of the system with time are studied during the evolution of instability. 
The kinetic energy K and Nusselt number N are defined as follows: 

where Ki is the initial kinetic energy at time 7 = 0; 

hot wall 
N = F h o t  wall = [ (1 + k)] 

b k O h ( - l ) * @ - 1 ) +  bkOkm(- l ) fk  . 
k = odd k = even I 

Here, k ,  m >, 1, I 2 0 and the bracket ( ) indicates that the values inside are averaged 
over one wavelength in the z-direction. The number of terms in either the z-expansion 
or in the x-expansion is increased, and the changes in the kinetic energy and the Nusselt 
number at  different time levels are compared until there is no appreciable difference 
in the computed values as a result of this increase. It was found that three terms in 
the x-expansion were sufficient for all angles of inclination. However, in thex-expansion, 
the number of terms required to achieve satisfactory convergence varied with the 
angle of inclination. At Q, = 0", six terms were sufficient, but, at. Q, = 45", ten terms, 
and, at  Q, = - 45O, twelve terms were needed. It should be mentioned here that for 
# = -t 45", even after satisfactory convergence was achieved in both kinetic energy 
and Nusselt number, a certain amount of waviness in the x-direction was exhibited 
by the isovorticity lines (cf. figures 7 and 8). However, this wavy structure disappeared 
with further increase in the number of terms in the x-expansion. In  the present investi- 
gation, the lower number of terms were used, mainly to reduce the computation time. 

The initial conditions used to solve (3.4)-(3.6) are obtained from the eigenvector of 
the linear eigenvalue problem (see appendix). Thus the terms corresponding to the 
linear mode alone are present initially. It would then be interesting to see how the 
other modes grow with time. The distribution of kinetic energy in all these modes, 
and the growth of each mode are shown separately in figure 2,  for the case of the 
vertical slot. Eight terms were used in the x-expansion, and Rt was kept a t  approxi- 
mately 55 yo above the critical value Rt,. The contributions to the net kinetic energy 
from modes higher than the second were almost negligible in magnitude. The results 
show clearly that the major contribution to the total kinetic energy comes from the 
fundamental, and the zero mode only. 

To study the influence of initial conditions over the final solution, first the value of 
Rt was maintained constant and the kinetic energy of the initial disturbances were 
changed. When the value of Rt was maintained a t  5 % above that of R,,, the growth 
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FIGUBE 2. The spectral growth of kinetic energy with time. - - -, total kinetic energy; -, 
spectral distribution of kinetic energy in z, lth component. q5 = O", a = 22.5, R, = 362000, 
R, = 200000, 8 terms in x. 

in kinetic energy and Nusselt number were monitored at  two different values of the 
initial kinetic energy, with the larger value being 2.5 times the smaller one. The results 
show that the growth in the kinetic energy and Nusselt number are more rapid when 
the input kinetic energy is larger at  all three angles of inclination (see figures 3 
and 4). In addition, when the initial value of the kinetic energy is held constant, the 
higher the value of the thermal Rayleigh number Rt above the critical value, the 
faster is the growth of the kinetic energy and the Nusselt number, as shown in figure 5.  
Hence, in order to compare the evolution of motion at  different angles of inclination, 
the input kinetic energy and the ratio of Rt over the critical value Rt, need to be 
maintained at  the same level. 

In this analysis the wavenumber was maintained at  the critical value (cf. table l), 
and the values of Rg, Sc and L corresponding to the experimental values of Paliwal & 
Chen (1980a) were used (i.e. R, = 3.62 x lo5, Sc = 556, L = 0-012, with the scaling 
factors D = 1 em, D 2 / ~ ,  = 5.5 x lo4 s, and I$:] = 5.2 x em-l). The compubations 
were carried out at  the angles of inclination $ = 0", + 45" and - 45" and, for all three 
cases under consideration, the thermal Rayleigh number Rt was maintained at  5 yo 
above the corresponding critical value. The results shown in figures 6-8 consist of 
the plots of the streamlines @, isovorticity lines w ,  isotherms T, and isosolutal lines S, 
a t  different time intervals. In each plot, the isopleths are divided into equal intervals 
of DELF between the maximum value, FMAX, and the minimum value, FMIN. The 
section of the plot shown has the x-co-ordinate in the horizontal direction, with the 
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FIGURE 3. The effect of change in the initia.1 kinetic energy on the growth of kinetic energy with 
time at various values of the angle of inclination. R, = 1*05R,, and a = a,. Initial K (--) = 
2.5 x initial K (- - -). 

r x  1 0 4  

_ _ _ _ _ _ _  -- .  

1 2 3 4 

FIGURE 4. The effect of change in the initial kinetic energy on the growth of Nusselt number 
with time at various values of the angle of inclination. Other details are the same as in figure 3. 
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FIQURE 5. The effect of change in thermal Rayleigh number on the growth of the kinetic energy 
and Nusselt number. -, R, = 1*50R,,; - - - , R, = 1.05Rt,. (b = O", OL = 22.5, R, = 362000,6 
terms in x, 3 terms in z. 

Angle Rtc a, 
0" 125710 22.5 

- 45O 128 570 16.5 
-I- 45" 1G7 620 12-9 

TABLE 1. Results from linear stability analysis; 
R, = 362000,Sc = 556, L = 0.012 

~ 

value of x ranging from - 0.5 to + 0.5, and the z-co-ordinate in the vertical direction, 
with the value of z ranging from 0 to 2h. Thus, for the case of the streamlines and the 
isovorticity lines, there are two cells in each plot. In figure 6 and 7, the hot wall is a t  
the left-hand side (i.e. at x = - 0.5) and, in figure 8, the hot wall is at the right-hand 
side (i.e. a t  x = 0.5). The cells in all these cases tilt up towards the hot wall. From the 
results, it can be seen that the pairs of counter-rotating cells predicted by the linear 
theory (Paliwal & Chen 1980b), merge into cells with the same sense of rotation, i.e. 
with the fluid rising near the hot wall and sinking near the cold wall. The predicted 
upward tilt of these cells compare favourably with the disposition of cells shown in 
shadowgraphs obtained by Paliwal & Chen (1980a) for all three angles. In both 
figures 7 and 8, the isovorticity lines show a certain amount of waviness in the X- 

direction. These will disappear as the number of terms in the x-expansion are in- 
creased as discussed previously. Though the merging takes place in a short time, - 1 s, consistent with the experimental results in all these cases, the magnitude and 
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FMAX = 0.155 
FMIN= -1.183 
DELF = 0.1 67 

JI 
FMAX = 5.532 
FMIN = -3.305 
DELF= 1,105 

w 

FMAX = 2.342 X lo3 
FMIN = -2.305 X lo3 
DELFz5.809X 10' 

T 

FMAX=4,150X 10 

DELF= 1,037 X 10 
FMIN = -4.150 

JI 

FMAX= 1.146 X 10 

DELF = 1.5 18 
FMIN = -0.685 

W 

FMAX = 2.469 X 10 
FMIN = -2.212 x 103 
DELF = 5.851 X lo2 

T 

FMAX= 4.150 x 10 
FMIN = -4.150 X 10 
DELF = 1.037 X 10 

S 

FMAX = O.! 55 
FMIN= -1.183 
DELF = 0.1 67 

* 
FMAX= 1.371 X 10 
FMIN = -0.408 
DELF = 1.765 

w 

FMAX = 2,593 X lo3 
FMIN = -2.237 X lo3 
DELF = 6.038 X 102 

T 

FMAX = 4.150 x 10 
FMIN=-4.150X 10 
DELF= 1.037 X 10 

S 

FMAX = 0.1 56 
FMIN = -1.183 
DELF = 0.1 67 

FIGURE 6. The evolution of instability in a vertical slot, 4 = 0"; contours of streamlines *, 
isovorticity lines w ,  isotherms T and isosolutal lines S. R, = 362000, R, = 132000, L = 0.012, 
Sc = 556 and a = 22.5. (u)  Time = 0 . 5 ~  (b )  1 . 5 ~  ( c )  3 . 0 ~  lW5. 

* 
FMAX = 4.086 
FMIN = -3.206 
DELF = 0.9 1 1 

w 

FMAX = t GO x 103 
FMIN = -1.626 X lo3 
DELF = 4.096 X 10' 
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FMAX=4-150X 10 
FMIN=-4.150X 10 
DELF= 1.037 X 10 

S 

FMAX = 0.586 
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JI 
FMAX = 6.602 
FMIN = -1.688 
DELF = 1.036 

w 

FMAX = 1.703 x 103 
FMIN = 1.584x lo3 
DELFz4.109X lo2 
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FMAX=4.150X 10 

DELF= 1.037 X 10 
FMIN = -4150 x 10 

S 

FMAX = 0.586 

DELF = 0.231 
FMIN = -1,260 

FIGURE 7 (a,  6) .  For legend see facing page. 
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FMAX = I .784 x 103 
FMIN = -1.539 x lo3 
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FIGURE 7. The evolution of instability in an inclined slot, # = -k 45'. Contours of streamlines $, 
isovorticity lines o, isotherms T and isosolutal lines S. R, = 362000, R, = 176000, L = 0.012, 
Sc = 556 and a = 12.9. (a) Time = 0 . 5 ~  ( b )  1.5 x (c) 3 . 0 ~  

J,' 

FMAX = 4.639 
FMIN = -3.947 
DELF = 1.073 

W 

FMAX= 1.884X lo3  

DELF = 4.667 X 10' 
FMIN = -1,850 X lo3 
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FMAX = 4,150 X 1 
FMIN=-4.150x 10 
DELF= 1,037 X 10 

S 

FMAX = 0.1 6 1 
FMIN = -0.852 
DELF = 0.1 27 

1c, 

FMAX = 6450 
FMIN= -1.958 
DELF = 1.101 

W 

FMAX= 1.935 X lo3  
FMIN = -1,810 X lo3 
DELFz4.681 X lo2 

T 

FMAX=4.150X 10 
FMlN = -4.150 X 10 
DELF= 1.037 X I 0  

,. 
3 

FMAX = 0.1 61 
FMIN = -0-85 1 
DELF = 0.1 27 

J/ 
FMAX= 1.019 X 10 
FMIN = -0.778 
DELF= 1.371 

0 

FMAX= 2.021 x lo3  
FMIN = -1.760 X lo3 
DELF = 4.726 X 10' 

T 

FMAX = 4.1 50 X 10 
FMIN=-4,150X 10 
DELF= 1.037X 10 

S 

FMAX = 0.16 1 
FMIN = -0.85 1 
DELF = 0.1 27 

FIGURE 8. The evolution of instability in an inclined slot, d = - 45". Contours of streamlines 
$k, isovorticity lines w ,  isothermsT and isosolutal linesS. R, = 326000, R, = 135000, L = 0.012, 
Sc = 656 and a = 16.5. (a) Time = 0 . 5 ~  ( b )  1.5 x (c) 3.0 x 
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FIGURE 9. The growth in kinetic energy with time. R, = 1.05 R,, and a = a,. 

the shape of the streamlines and the isovorticity lines are not the same a t  different 
angles of inclination. In  addition, there are differences in the structure and the shape 
of the isotherms and the isosolutal lines. 

Thus, in order to obtain a better understanding of the evolution of motion a t  
different angles of inclination, the growth in kinetic energy with time is considered. 
The results as shown in figure 9 indicate that the growth is more rapid when heating 
is from above than when heating is from below, and that this growth of kinetic energy 
with time is most rapid in the vertical fluid layer. In figure 10, the variation of Nusselt 
number a t  the hot wall with time is shown. The trend in the growth of the Nusselt 
number is similar to that of the kinetic energy, and the results again show that the 
evolution of instability is faster when heating is from above, compared to the case 
when heating is from below. This finding offers theoretical confirmation to the experi- 
mental observations made by Paliwal & Chen (1980a), and can be explained by the 
vertical salinity distribution in these two cases. 

The results also show that the growth of disturbances is most rapid in a vertical slot. 
This may be explained by the fact that, the higher the temperature gradient in the 
horizontal direction, the faster the evolution of the instability. For the same lateral 
temperature difference, the temperature gradient in the horizontal direction for the 
vertical fluid layer is larger than that in inclined fluid layers. Based on this considera- 
tion alone, the vertical fluid layer would be the most unstable. Hence, to compare the 
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FIGURE 10. The growth in Nusselt number with time. Other details are the aame aa in figure 9. 

stability of an inclined fluid layer heated from above with that of a vertical fluid layer 
heated from its side, the relative magnitudes of the horizontal and the vertical density 
gradients should be considered. The experimental and theoretical results based on a 
linear stability analysis of Paliwal & Chen ( 1  980a, b)  show that, up to moderately 
small angles of inclination, the vertical fluid layer is more stable when compared to 
the inclined fluid layer heated from above; while, at  larger angles of inclination, the 
inclined layer heated from above is &abler. 

5. A limiting case : L --f 0 and Sc + 00 

We consider the following limiting case (cf. Straus 1972) in which the thermal 
diffusivity and the kinematic viscosity are much larger than the solute diffusivity. 
The heat-salt system is a typical example; the Lewis number is N and the 
Schmidt number is N 7 x 102. Thus, for this problem, the limiting case of L ic 0 and 
S c  3 co can introduce considerable simplifications in (3.4)-(3.6). The momentum and 
the heat-transport equations reduce to a system of linear algebraic equations for the 
expansion coefficients. However, all the terms in the transport equation for solute are 
retained, and a system of coupled first-order nonlinear ordinary differential equations 
is obtained. The initial conditions are again obtained from the linear eigenvalue 
problem. The ordinary differential equations are first solved and the values of the 
coefficients for salinity at the next time-step are obtained (Gear 1971). These updated 
values are then used to solve the system of linear algebraic equations for the coefficients 
of stream function and temperature by a Gaussian elimination process using the Crout 
algorithm (Porsythe & Moler 1987). As anticipated, the results based on the 
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* 
FMAX = 9.55 1 
FMIN = -1,055 
DELF = 1.326 
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FMAX = 1.221 x 104 
FMIN = -6.584 X lo4 
DELF = 2.349 X lo4 

* 
FMAX= 1.006X 10 
FMIN = -0.973 
DELF = 1.379 

w 

FMAX = 1.254 X lo4 
FMIN = -6.413 X lo3 
DELF = 2.370 X lo3 

T 

FMAX=4,150X 10 
FMIN=-4.150x 10 
DELF = 1.037 X 10 

T 

FMAXz4.150x 10 
FMIN = -4.150 X 10 
DELF=l.O37XlO 

T 

FMAX = 4.150 X 10 
FMIN = -4.150 X 10 
DELF= 1.037 X 10 

S 

FMAX = 0.159 
FMIN = - 1.1 82 
DELF = 0.1 68 

S 

FMAX= 0.159 
FMIN = -1.1 8 1 
DELF ~ 0 . 1 6 7  

S 

FMAX = 0,159 
FMIN= -1.181 
DELF = 0.1 67 

FIGURE 11. The evolution of instability in a vertical slot, $ = 0'. Contours of streamlines fi, 
isovorticity lines w ,  isotherms T and isosolutal lines S ,  for the general and the limiting case. 
R, = 362000, R, = 132000 and a = 22.5. (a)  Time = 0 ;  ( b )  2 . 0 ~  L = 0.012, Sc = 556;  
( c )  2.0 x lo-*, L + 0, and Sc --f co. 

limiting case L-tO and Sc-tO agreed well with the heat-salt case. For comparison, the 
plots of +, w, T and S are given in figure I1 a t  some selected time levels for the 
cases with and without the limiting approximation. The plotting details for figure 11 
are the same as that of figure 6. No attempt was made to plot the growth in kinetic 
energy with time for these two cases, as it was almost impossible to distinguish between 
the results. However, the Nusselt number N is always equal to unity for the case with 
the limiting approximation, unlike the case without such an approximation, where 
there is a net growth in N with time. The magnitude of this growth is small, and the 
results indicated in figure 11 confirm this fact. I n  fact, there is little difference in the 
temperature and the salinity profiles, while the differences in the streamlines and the 
isovorticity profiles are quite small. 

6.  Conclusions 
Anonlinear analysis has been carried out to study the initial evolution of the double- 

diffusive instability in an inclined fluid layer. The pairs of counter-rotating cells 
predicted by the linear theory merge into single cells with the same sense of rotation 
as indicated by experiments, even under conditions that are only slightly supercritical, 
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within a very short period of time. The results indicate that the evolution of instability 
in an inclined fluid layer, stratified by solute distribution, is faster when heating is 
from above, compared with the case when the heating is from below. In  addition, the 
results show that there is no observable steady state in the range of our computations. 

The authors would like to acknowledge the financial support provided by the 
National Science Foundation through Grant ENG78-16962. 

Appendix. Linear eigenvalue problem 
The linearized perturbation equations are obtained by neglecting the nonlinear 

terms in (3.13)-(3.15). The expansion coefficients ulk, blk, and clk are now assumed to 
be proportional to exp UT and the resulting system of equations could be written as 

(A- uI) x = 0. 

Here, the matrix A is complex, I represents the identity matrix, and the vector x 
contains the unknown coefficients alk, b,, and elk. The eigenvalues of the system of 
(A 1) are first computed through the modified LR algorithm of Martin & Wilkinson 
(1968a, b ) .  These eigenvalues u are a function of the Lewis number L, the Schmidt 
number Sc, the solute Rayleigh number Rs, the angle of inclination 4, the wavenumber 
a, and the thermal Rayleigh number Rt. The neutral states of these parameters occur 
when the condition max[9(u)] = 0 is satisfied. In the present analysis, the para- 
meters L, Sc and R, are kept constant at  the values corresponding to those used by 
Paliwal & Chen ( 1 9 8 0 ~ ) .  Then, for a given value of 4, the other two remaining para- 
meters, a and Rt, are relaxed and the critical states are determined. The results for 
4 = 0", 45" and -45" are given in table 1, and these are in agreement with those 
obtained by Paliwal & Chen (1980b). In order to obtain the appropriate initial condi- 
tions for the nonlinear problem, the value of the wavenumber a is maintained at  its 
critical value, and the eigenvector of the linear problem is computed through the 
modified QR algorithm of Peters & Wilkinson (1970). 
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